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 Member 1: Close but I was always afraid of bats, so I will go for Batman

 Member 2: I have not read the comics but I saw BvS and Batman won
the fight, although it was close. So, I suppose Batman wins

…

 Member n/2+1: It is close if you consider that Superman is weak to
kryptonite. I will vote for Batman

 Member n/2+2: Come on people are you serious? Superman wins!!

…

 Member n: This is not even a contest… Superman would destroy him



Intensity of preferences
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 Batman is the winner according to the majority



Intensity of preferences
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 Batman is the winner according to the majority

 However, the outcome may would have been
different if we had information about the
intensity of the preferences



The setting
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 A set of 𝑛 agents 𝑁 and a set of 𝑚 alternatives 𝐴

 Each agent 𝑖 ∈ 𝑁 has a value 𝑣𝑖𝑥 for every
alternative 𝑥 ∈ 𝐴 (cardinal preferences)

 Captures how intense a preference is



The setting
15

 The agents submit a preference ranking over the
alternatives that is consistent to their values
(ordinal preferences)

 An ordinal mechanism takes these rankings as an
input

 Outputs a single alternative as the winner



Utilitarian Social Choice
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 Objective: Maximize the social welfare, i.e., select
the alternative x that maximizes
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Utilitarian Social Choice
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 Objective: Maximize the social welfare, i.e., select
the alternative x that maximizes

 Expresses how the society feels about the 
produced outcome
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Utilitarian Social Choice
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 Objective: Maximize the social welfare, i.e., select
the alternative x that maximizes

 This is easy to achieve when the cardinal 
preferences are known
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Utilitarian Social Choice
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 Objective: Maximize the social welfare, i.e., select
the alternative x that maximizes

 It may not be possible when only the ordinal 
preferences are known, due to the lack of 
information



𝑖∈𝑁

𝑣𝑖𝑥
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 The distortion of an ordinal mechanism 𝑀 is the
maximum ratio (over all possible inputs) of the
maximum possible social welfare, over the social
welfare achieved by the mechanism

 Defined by Procaccia and Rosenschein [2006]
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 The distortion of an ordinal mechanism 𝑀 is the
maximum ratio (over all possible inputs) of the
maximum possible social welfare, over the social
welfare achieved by the mechanism

 Defined by Procaccia and Rosenschein [2006]

 Expresses the guarantees of the mechanism in the
worst-case scenario



Distortion
22

 Remark 1: A mechanism that has access to the
cardinal information can obviously achieve a
distortion of 1



Distortion
23
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Distortion
24

 Remark 1: A mechanism that has access to the
cardinal information can obviously achieve a
distortion of 1

 Remark 2: A mechanism that has access only to the
ordinal information may elect an alternative that is
different from the optimal

 The distortion captures how good-bad is this alternative
in comparison with the optimal one

 Remark 3: The distortion is usually expressed as a
function of m (the number of alternatives)
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 Ordinal Deterministic Mechanisms

 Ordinal Randomized Mechanisms

 There is randomness on how the mechanism elects
the winner

 The guarantees of the mechanism are in expectation
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 Ordinal Deterministic Mechanisms

 Ordinal Randomized Mechanisms

 Unit-Sum Assumption: The values of an agent over
the alternatives sum up to 1

◼ An agent assigns to each alternative a percentage that
expresses how much he likes him

◼ Without any normalization assumption the distortion can
be arbitrarily bad
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 Ordinal Deterministic Mechanisms

 The distortion of Plurality for unit-sum valuations
is 𝑂(𝑚2) [Caragiannis and Procaccia 2011]

 The distortion of any deterministic ordinal
mechanism for unit-sum valuations is 𝛺(𝑚2)
[Caragiannis et al. 2017]
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 Ordinal Randomized Mechanisms

 There is an ordinal randomized mechanism with

𝑂( m ⋅ log∗𝑚) distortion for unit-sum valuations
[Boutilier et al. 2015]

 The distortion of any randomized ordinal

mechanism for unit-sum valuations is Ω( 𝑚)
[Boutilier et al. 2015]



What we know?
31

 Most of the work on distortion regards ordinal
mechanisms

Ordinal 
Preferences

Deterministic: 𝑂(𝑚2)
Randomized: 𝑂( m ⋅ log∗𝑚)

Cardinal
Values

Distortion=1
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 How can we improve the distortion?

Ordinal 
Preferences

Deterministic: 𝑂(𝑚2)
Randomized: 𝑂( m ⋅ log∗𝑚)

Cardinal
Values

Distortion=1
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 What if we could elicit some cardinal
information via simple queries?
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An idea
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 What if we could elicit some cardinal
information via simple queries?

 What is your value for alternative x?

 Do you prefer alternative x by at least twice as much
as alternative y?
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 Value Query: Present agent i with an alternative x, 
and ask the agent for his value 𝑣𝑖𝑥
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 Value Query: Present agent i with an alternative x, 
and ask the agent for his value 𝑣𝑖𝑥

 Comparison Query: Present agent i with two 
alternatives x and y, and a number d, and ask the 
agent whether 𝑣𝑖𝑥 ≥ 𝑑 ⋅ 𝑣𝑖𝑦
 A weaker form of query

 Easier for an agent to answer
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 Algorithm 𝑄

 Modified voting rule 𝑅
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Mechanism 𝑴 = (𝑄, 𝑅)

 Algorithm 𝑄

❑ Input: the ordinal profile ≻

❑ Makes a set of (value or comparison) queries per agent

❑ Output: the answers to the queries 

 Modified voting rule 𝑅
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Mechanism 𝑴 = (𝑄, 𝑅)

 Algorithm 𝑄

❑ Input: the ordinal profile ≻

❑ Makes a set of (value or comparison) queries per agent

❑ Output: the answers to the queries 

 Modified voting rule 𝑅

❑ Input: the ordinal profile ≻, and the answers to the queries 𝑄(≻)

❑ Output: a single alternative
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Ordinal 
Preferences

Deterministic: 𝑂(𝑚2)
Randomized: 𝑂( m ⋅ log∗𝑚)

Cardinal
Values

Distortion=1

I can’t believe that
I lost to this guy

What lies in between?
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Ordinal 
Preferences

Deterministic: 𝑂(𝑚2)
Randomized: 𝑂( m ⋅ log∗𝑚)

Cardinal
Values

Distortion=1

Number of queries per agent

Let’s try 
this again
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Approach
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 𝑂 1 distortion
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 Every result holds without making any normalization 
assumption about the values of the agents

 Unless stated otherwise

 The focus will be on: Deterministic mechanisms

 𝑂 𝑚 distortion: Bound of the randomized ordinal
mechanisms

 𝑂 1 distortion: Provides a very good approximation of 
the optimal outcome

 Goal: Reach these bounds with as few queries (per 
agent) as possible
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best way to spend them?
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 If we have λ available queries per agent, what is the 
best way to spend them?

 A first idea: There is a lot of value hidden under the λ-
best alternatives of each agent

 Since we have the ordering, we know who they are

 Maybe we should focus there
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 Mechanism: λ-Prefix Range Voting (λ-PRV)
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 λ-PRV

 Ask every agent for the value that he has at the best λ 
positions
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 λ-PRV

 Ask every agent for the value that he has at the best λ 
positions

 Set the rest of the values to 0
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 λ-PRV

 Ask every agent for the value that he has at the best λ 
positions

 Set the rest of the values to 0

 Choose the alternative that maximizes the social welfare, 
according to these values
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 λ-PRV

 By asking λ queries per agent achieves an 𝑚/𝜆 distortion
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 λ-PRV

 By asking λ queries per agent achieves an 𝑚/𝜆 distortion

 Achieves distortion O( 𝑚) using Θ( 𝑚) queries per 
agent

 Achieves distortion Ο(1) using Θ(𝑚) queries per 
agent
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 Is it possible to achieve these distortion bounds by 
asking each agent fewer queries?
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 Is it possible to achieve these distortion bounds by 
asking each agent fewer queries?

 Yes!
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 We will try to use the fact that the ordinal preferences 
are known in a more clever way



Can we do better?
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 Is it possible to achieve these distortion bounds by 
asking each agent fewer queries?

 Yes!

 We will try to use the fact that the ordinal preferences 
are known in a more clever way

 What about Binary Search?



Binary Search
63

 Consider a set of m items the value of which is 
hidden



Binary Search
64

 Consider a set of m items the value of which is 
hidden

 Suppose however that the items are sorted in an 
increasing manner, and their ordering is given



Binary Search
65

 Consider a set of m items the value of which is 
hidden

 Suppose however that the items are sorted in an 
increasing manner, and their ordering is given

 Input: A number and the ordering of the items



Binary Search
66

 Consider a set of m items the value of which is 
hidden

 Suppose however that the items are sorted in an 
increasing manner, and their ordering is given

 Input: A number and the ordering of the items

 Output: The item with the closest value to the 
given number



Binary Search
67

 Consider a set of m items the value of which is 
hidden

 Suppose however that the items are sorted in an 
increasing manner, and their ordering is given

 Input: A number and the ordering of the items

 Output: The item with the closest value to the 
given number

 Allowed actions: Ask what is the hidden value of 
an item
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 Number: 41

1   <   8   <  19  <  37  <  43 <  70   <  76   <  80

 We found the desired item (no need to check the rest)

 However, in the worst-case scenario we will make m
queries 
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 Number: 41

1   < 8     < 19   <   37 <  43   <  70   <  76   <  80

 Can we solve the problem with fewer queries?
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 Number: 41

1   < 8     < 19   <   37 <  43   <  70   <  76   <  80

 Yes! Use the ordering in a more clever way!
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 Number: 41

1   < 8     < 19   <  37  <  43   <  70   <  76   <  80
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 Number: 41

1   < 8     < 19   <  37  <  43   <  70   <  76   <  80

 The numbers on the left are smaller than 37, so 
there is no need to check them
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 Number: 41

37  <  43   <  70   <  76   <  80
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 Number: 41

37  <  43   <  70   <  76   <  80

 The numbers on the right are larger than 70, so 
there is no need to check them
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 Number: 41

37  <  43   <  70   

 Do the same recursively
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 Number: 41

37  <  43 <  70   

 This procedure makes at most 𝑙𝑜𝑔𝑚 queries!
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 Is it possible to achieve these distortion bounds by 
asking each agent fewer queries?

 Yes!

 k-Acceptance Range Voting (k-ARV): A mechanism that 
runs the Binary Search as a sub-routine
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Value

Alternatives

Valuation function
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𝑘-Acceptable Range Voting
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Value

Alternatives

Presented in a continuous
way for convenience
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 Define 𝑘 threshold values 𝜆1, … , 𝜆𝑘

𝑘-Acceptable Range Voting

𝑣𝑖
∗ We know the ordering,

we can use 
binary search!!
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 Define 𝑘 threshold values 𝜆1, … , 𝜆𝑘

𝑘-Acceptable Range Voting

𝑣𝑖
∗

𝑣𝑖
∗/𝜆1

𝑣𝑖𝑥 ≥
𝑣𝑖
∗

𝜆1
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 Define 𝑘 threshold values 𝜆1, … , 𝜆𝑘

𝑘-Acceptable Range Voting

𝑣𝑖
∗

𝑣𝑖
∗/𝜆1

𝑣𝑖𝑥 ≥
𝑣𝑖
∗

𝜆1

𝑣𝑖
∗

𝜆1
> 𝑣𝑖𝑥 ≥

𝑣𝑖
∗

𝜆2

𝑣𝑖
∗/𝜆2
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𝑣𝑖
∗
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𝑣𝑖
∗/𝜆2

𝑣𝑖
∗/𝜆𝑘

𝑣𝑖
∗

𝜆𝑘−1
> 𝑣𝑖𝑥 ≥

𝑣𝑖
∗

𝜆𝑘

… 

⋮
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Simulated valuation function



 Set 𝜆ℓ = 𝑚ℓ/(𝑘+1) for ℓ ∈ [𝑘]

 Compute the simulated valuation function for every agent

 Return the alternative with maximum simulated social welfare

𝑘-Acceptable Range Voting
96



 Set 𝜆ℓ = 𝑚ℓ/(𝑘+1) for ℓ ∈ [𝑘]

 Compute the simulated valuation function for every agent

 Return the alternative with maximum simulated social welfare

𝑘-Acceptable Range Voting

Theorem
𝑘-ARV makes 𝑂(𝑘 ⋅ log𝑚) values queries per agent, and has 

distortion 𝑂(𝑘+1 𝑚), even for unrestricted values
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 Set 𝜆ℓ = 𝑚ℓ/(𝑘+1) for ℓ ∈ [𝑘]

 Compute the simulated valuation function for every agent

 Return the alternative with maximum simulated social welfare

 1-ARV has distortion 𝑂( 𝑚) using 𝑂(log𝑚) queries per agent

 log𝑚-ARV has distortion 𝑂(1) using 𝑂(log2𝑚) queries per agent

𝑘-Acceptable Range Voting

Theorem
𝑘-ARV makes 𝑂(𝑘 ⋅ log𝑚) values queries per agent, and has 

distortion 𝑂(𝑘+1 𝑚), even for unrestricted values
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 Ο 𝑚 distortion

 Θ 𝑚 queries Ο(log𝑚) queries

 Ο 1 distortion

 Θ 𝑚 queries Ο(log2𝑚) queries



Remark 2
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 log𝑚-ARV has distortion 𝑂(1) using 𝑂(log2𝑚) queries 
per agent

 Can be also achieved by using comparison queries under 
the unit-sum assumption

 The assumption is needed in order to approximate via 
comparison queries the value of the alternative at the first 
position



Remark 3
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 𝑂 𝑚 distortion

 𝑂(log𝑚) queries

 Lower bound: Constant number of queries per agent

 𝑂 1 distortion

 𝑂(log2𝑚) queries

 Lower bound: log𝑚 queries per agent
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